Extreme events – heat and drought

Benjamin L. Preston

Program Director, Infrastructure Resilience and Environmental Policy

20th Energy and Climate Research Seminar May 10, 2017, Washington, DC

Vulnerability of the U.S. Energy System

Temperature Trends Since 800 AD

Xing et al. (2016) The extratropical Northern Hemisphere temperature reconstruction during the last millennium based on a novel method.

U.S. Regional Temperature Trends

Trends in Extreme Temperature Anomalies

EPA (2016) Climate Change Indicators

Step Changes in Global & Regional Temperatures?

Jones, RN and Ricketts, JH (2017) Reconciling the signal and noise of atmospheric warming on decadal timescales

Climate change and Electricity Demand

2030 Demand (% of Capacity)

2050 Demand (% of Capacity)

Allen et al (2014) Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

Trends in U.S. Drought

EPA (2016) Climate Change Indicators

Trends in U.S. Southwest Drought

Year

Drought and Energy Production in California

EIA (2014) California drought leads to less hydropower, increased natural gas generation

Drought in a Long-Term Context

"Paleoclimate reconstructions clearly indicate that there have been prolonged multidecadal dry periods . . .not seen in approximately 100 years of instrumental record."

Vano et al (2014) Understanding Uncertainties in Future Colorado River Streamflow

U.S. Temperatures Projected to Continue to Rise

Projected changes (2011-2050 minus 1981-2005)

Annual Mean Temperature

Extreme Cold Days

Ashfaq et al (2016) High-resolution ensemble projections of near-term regional climate over the continental United States

Model Projections of Future Water Availability

Change in Freshwater Availability (mm/year) in the 2030s

Ganguly et al. (2015) Climate Adaptation Informatics: Water Stress on Power Production

Projecting Trends in U.S. Drought

CMIP5 Drought Projections (RCP 8.5, 2050-2099 CE)

Cook et al (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains

Wuebbles et al (2014) CMIP5 Climate Model Analyses: Climate Extremes in the United States 21

Projections of Extended Drought Events

"The increasing risk of consecutive warm-dry years raises the possibility of extended drought periods such as those found in the paleoclimate record" Diffenbaugh et al. (2015)

Implications for Climate Risk Management

- Climate risk is increasing from multiple sources
- Observations and projections of the future should be placed in their long-term climate context
- Future climate conditions are unlikely to evolve along smooth, predictable trajectories
- There may be value in testing the robustness of energy systems against a broader range of climatic conditions

Thank You

bpreston@rand.org

